skip to main content


Search for: All records

Creators/Authors contains: "Cates, LeAnna L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Because of limited data, much remains uncertain about parameters related to transmission dynamics of Zika virus (ZIKV). Estimating a large number of parameters from the limited information in data may not provide useful knowledge about the ZIKV. Here, we developed a method that utilizes a mathematical model of ZIKV dynamics and the complex-step derivative approximation technique to identify parameters that can be estimated from the available data. Applying our method to epidemic data from the ZIKV outbreaks in French Polynesia and Yap Island, we identified the parameters that can be estimated from these island data. Our results suggest that the parameters that can be estimated from a given data set, as well as the estimated values of those parameters, vary from Island to Island. Our method allowed us to estimate some ZIKV-related parameters with reasonable confidence intervals. We also computed the basic reproduction number to be from 2.03 to 3.20 across islands. Furthermore, using our model, we evaluated potential prevention strategies and found that peak prevalence can be reduced to nearly 10% by reducing mosquito-to-human contact by at least 60% or increasing mosquito death by at least a factor of three of the base case. With these preventions, the final outbreak-size is predicted to be negligible, thereby successfully controlling ZIKV epidemics.

     
    more » « less
  2. Abstract

    Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is important for predicting microbial community function in the future. Here, we use continental- and global-scale soil fungal community surveys, focused within northern temperate latitudes, to estimate the relative contribution of time and space to soil fungal community turnover. We detected large intra-annual temporal differences in soil fungal community similarity, where fungal communities differed most among seasons, equivalent to the community turnover observed over thousands of kilometers in space. inter-annual community turnover was comparatively smaller than intra-annual turnover. Certain environmental covariates, particularly climate covariates, explained some spatial–temporal effects, though it is unlikely the same mechanisms drive spatial vs. temporal turnover. However, these commonly measured environmental covariates could not fully explain relationships between space, time and community composition. These baseline estimates of fungal community turnover in time provide a starting point to estimate the potential duration of legacies in microbial community composition and function.

     
    more » « less